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Active learning is the problem of interactively constructing the training set used in classification in order to reduce its size. It would
ideally successively add the instance-label pair that decreases the classification error most. However, the effect of the addition of
a pair is not known in advance. It can still be estimated with the pairs already in the training set. The online minimization of
the classification error involves a tradeoff between exploration and exploitation. This is a common problem in machine learning
for which multiarmed bandit, using the approach of Optimism int the Face of Uncertainty, has proven very efficient these last
years. This paper introduces three algorithms for the active learning problem in classification using Optimism in the Face of
Uncertainty. Experiments lead on built-in problems and real world datasets demonstrate that they compare positively to state-
of-the-art methods.

1. Introduction

Traditional classification is a supervised learning framework
in which the goal is to find the best mapping between
an instance space and a label set. It is based only on the
knowledge of a set of instances and their corresponding labels
called the training set. To obtain it, an expert or oracle is
required to manually label each of the examples, which is
expensive. Indeed, this task is time consuming and may as
well involve any other kind of resources. The aim of active
learning [1] is to reduce the number of requests to the expert
without losing performances, which is equivalent to maxi-
mizing the performance with a certain number of labeled
instances. This can be done by dynamically constructing the
training set. Each new instance presented to the expert is thus
carefully chosen to generate the best gain in performance.The
selection is guided by all the previous received labels. This is
a sequential decision process [2].

However, the gain in performance due to a particular
instance is not known in advance.This is for two reasons: first,
the label given by the expert is not known before querying,

and second, the true mapping is unknown. However, those
values can be estimated also more and more precisely as the
training set grows, because it is the goal of classification to get
a good estimate of those values. Still, a low confidence must
be put on the first estimations while later estimations may
be more trusted. An instance may thus be presented to the
expert because it is believed to increase the performances of
the classifier, resulting in a short term gain. Or, because it will
improve the estimations and help to select better instances in
the future, resulting in a long term gain.

This is a very common problem in literature known as
exploration versus exploitation dilemma. It has been suc-
cessfully addressed under the multiarmed bandit problem, as
introduced in [3] and surveyed in [4]. In this problem, a set of
arms (choices) is considered,where each provides a stochastic
reward when pulled (selected). The distribution of rewards
for an arm is initially unknown.The goal is to define a strategy
to successively pull arms, which maximizes the expected
reward under a finite budget of pulls. Several methods have
been introduced to solve this dilemma. One of them is the
Upper Confidence Bound algorithm, introduced in [5]. It
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uses the approach of Optimism in the Face of Uncertainty,
which selects the arm for which the unknown expected
reward is possibly the highest.One notable advantage of those
algorithms is that they come with finite-sample analysis and
theoretical bounds.

The idea is thus to use Optimism in the Face of Uncer-
tainty for the Active Learning problem in classification. To
use this approach, the problem is cast under the multiarmed
bandit setting. However, this one deals with a finite number
of arms, whereas in classification the instance space may be
continuous. In order to adapt it to classification, the instance
space is partitioned into several clusters. The goal is thus to
find the best mapping between the clusters and the label set,
under a finite budget of queries to the expert.

At first, we study the case of independent clusters, where
the label given to each cluster only depends on the samples
taken in it. We show two algorithms capable of the online
allocation of samples among clusters. In this context, we need
at least one (or even two) sample in each cluster in order to
start favoring one for selection. Thus, the number of clusters
must not be too high. This implies using a coarse partition
which may limit the maximum performance. The choice
of this partition is thus a key issue which has no obvious
solution.

Allowing the prediction of each cluster to depend on the
samples received in others enables us to use a more refined
partition. This makes the choice of the partition less critical.
We thus study the case of information sharing clusters. The
adaptation of the first case to this one goes through the use of
a set of coarse partitions combined by using a Committee of
Experts approach. We introduce an algorithm that allocates
samples in this context. Doing so, the number of clusters
is not limited anymore, and increasing it allows us to apply
our algorithms on a continuous instance space. Another
algorithm is introduced as an extension of the first one using
a kernel.

We start by an overview of the existing methods in active
learning in Section 2. Then, in Sections 3–5, we describe the
algorithms. We handle the cases of independent cluster and
information sharing clusters. For each one of these problem
we define a new loss function that has to be minimized. We
also define the confidence interval used by our optimistic
algorithms. In Section 6, we evaluate the performance of the
algorithms in both built-in problems and real world datasets.

2. Related Work

Many algorithms already exist for active learning. A survey of
thosemethods can be found in [6]. Among them, uncertainty
sampling [7] uses a probabilistic classifier (it does not truly
output a probability but a score on the label) and samples
where the label to give is least certain. In binary classification
with labels 0 or 1, this is where the score is closest to 0.5.
Query by committee [8, 9] methods consider the version
space or hypotheses space as the set of all consistent classifiers
(nonnoisy classification) and try to reduce it as fast as possible
by sampling the most discriminating instance. It finishes
when only one classifier is left in the set. Extensions exist
for the noisy case, either by requiring more samples before

eliminating a hypothesis [10] or by associating a metric to
the version space and trying to reduce it [11, 12]. Other
algorithms exist that use a measure of confidence for the
labels currently given, such as entropy [13] or variance [14].
Finally, the expected error reduction [15–18] algorithms come
from the fact that the measure of performance is mostly the
risk and that it makes more sense to minimize it directly
rather than some other indirect criteria. Our work belongs to
this last category. Using an optimistic approach enables us to
minimize directly the true risk instead of the expected belief
about it.

Other methods also use Optimism in the Face of Uncer-
tainty for active learning. In [19], the method is more related
to query by committee since it tries to select the best hypoth-
esis from a set. It thus considers each hypothesis as an arm of
a multiarmed bandit and plays them in an optimistic way. In
[20], the authors study the problem of estimating uniformly
well the mean values of several distributions under a finite
budget. This is equivalent to the problem of active learning
for regression with an independent discrete instance space.
Although this algorithm may still be used on a classification
problem, it is not designed for that purpose. Indeed, a good
estimate of the mean values leads to a good prediction of
the label. However, from the active learning point of view, it
will spend effort to be precise on the estimation of the mean
value even if this precision is of no use for the decision of
the label. Efforts could have been spent to be more certain
about the label to give.The importance of having an algorithm
specifically adapted to classification is evaluated in Section 6.

3. Materials and Methods

The classical multiarmed bandit setting deals with a finite
number of arms. This is not appropriate for the general
classification problem in which the instance space may be
continuous. In order to adapt this theory to active learning,
wemust first study the case of a discrete instance space, which
may come from a discretized continuous space or originally
discrete data. At first, we study the case of independent
clusters, where no knowledge is shared between neighbors.
After that, we will improve the selection strategy by letting
neighbor clusters to share information. At the end, by
defining clusters that contain only one instance from the pool
each, with a good generalization behavior, we are able to apply
this theory to continuous data.Wemay even define externally
the relations between instances and use a kernel.

Let us define the following notations. We consider the
instance space 𝑋 and the label set 𝑌. In binary classification,
the label set is composed of two elements, in this work 𝑌 =

{0, 1}. The oracle is represented by an unknown but fixed
distribution 𝑃(𝑦 ∈ 𝑌 | 𝑥 ∈ 𝑋). The scenario considered in
this work is pool-based sampling [7]. It assumes that there
is a large pool of unlabeled instances available from which
the selection strategy is able to pick. At each time step 𝑡, an
active learning algorithm selects an instance 𝑥

𝑡
∈ 𝑋 from

the pool, receives a label 𝑦
𝑡
∈ 𝑌 drawn from the underlying

distribution, and add the pair to the training set. This is
repeated up to time 𝑛.The aim is to define a selection strategy
that generates the best performance of the classifier at time 𝑛.
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Theperformance ismeasuredwith the risk, which is themean
error that would achieve the classifier by predicting labels.

4. Independent Clusters

4.1. Partition of the Instance Space. In this section, we focus
on the problem of defining a selection strategy with a discrete
instance space. Either the space is already discrete or a
continuous space is partitioned into several clusters. The
following formulation assumes the latter case; otherwise, the
same formulation applies for the discrete case if clusters are
replaced with instances. The instance space is thus divided
into𝐾 clusters.The problem is now to choose inwhich cluster
to sample.

Let us define the partition

𝑁 = {𝑋
1
, . . . , 𝑋

𝐾
} (1)

with the following properties:

(i) ∀𝑖 ∈ ⟦1, 𝐾⟧ : 𝑋
𝑖

̸= 0, no cluster is empty,

(ii) ∪𝐾

𝑖=1
𝑋

𝑖
= 𝑋, the clusters cover the whole instance

space,
(iii) ∀(𝑖, 𝑗) ∈ ⟦1, 𝐾⟧

2
: 𝑖 ̸= 𝑗 ⇒ 𝑋

𝑖
∩ 𝑋

𝑗
= 0, no clusters

overlap.

It is important to note that the partition does not change
during the progress of the algorithm.

Having discretized the instance space, we can now for-
malize the problem under a K-armed bandit setting. Each
cluster 𝑋

𝑘
∈ 𝑁 is an arm characterized by a Bernoulli

distribution ]
𝑘
with mean value 𝜇

𝑘
. Indeed, samples taken

in a given cluster can only have a value of 0 or 1. At each
round, or time step, 𝑡 ≥ 1, an allocation strategy selects an
arm 𝑘

𝑡
∈ ⟦1,𝐾⟧, which corresponds to picking an instance

randomly in the cluster 𝑋
𝑘
𝑡

and receives a sample 𝑦
𝑘,𝑡

∼ ]
𝑘
,

independently of the past samples. Let (𝑤
𝑘
)
𝑘∈⟦1,𝐾⟧

denote the
weight of each cluster, with ∑

𝐾

𝑘=1
𝑤
𝑘

= 1. For example, in
a semisupervised context using pool-based sampling, each
weight is proportional to the number of unlabeled data points
in each cluster, while, in membership query synthesis, the
weights are the sizes or areas of clusters.

Let us define the following notations:

𝑇
𝑘,𝑡

=

𝑡

∑

𝑠=1

1
𝑘
𝑠
=𝑘

(2)

is the number of times arm 𝑘 has been pulled up to time 𝑡 and

𝜇
𝑘,𝑡

=
1

𝑇
𝑘,𝑡

𝑇
𝑘,𝑠

∑

𝑠=1

𝑦
𝑘,𝑠

(3)

is the empirical estimate of the mean 𝜇
𝑘
at time 𝑡.

Under this partition, themapping of the instance space to
the label set is limited to the mapping of clusters to the label
set. We thus define the classifier that creates this mapping
according to the samples received up to time 𝑡. In this section,
the clusters are assumed to be independent. This means that

the label given to a cluster can only depend on samples in this
cluster. We use the naive Bayes classifier that gives the label

𝑓 (𝑥 ∈ 𝑋
𝑘
) = 𝑙

𝑘,𝑡
= [𝜇

𝑘,𝑡
] (4)

to cluster 𝑘, where [⋅] is the round operator.

4.2. Full Knowledge Criteria. The goal is to build an opti-
mist algorithm for the active learning problem. A common
methodology in the Optimism in the Face of Uncertainty
paradigm is to characterize first the optimal solution.We thus
place ourselves in the Full Knowledge setting. In this setting,
we let the allocation strategy depend on the true value of 𝜇

𝑘

for each cluster, and this defines the optimal allocation of
the budget 𝑛. An optimist algorithm will then estimate those
values and allocate samples as close as possible to the optimal
allocation. Note that the true values of 𝜇

𝑘
cannot be used by

the classifier directly but only by the allocation strategy.
In the following sections, we show two full knowledge

criteria: data-dependent and data-independent. In the data-
independent case, the optimal allocation does not depend
on the samples received so far. It can be related to one-shot
active learning, as defined in [18], in which the allocation
of the budget is decided before sampling any instances. In
the data-dependent case, the label given by the classifier at
time 𝑡 is also considered. This is related to fully sequential
active learning, as defined in [18], where the allocation of
the budget is updated after each sample. Note that in both
cases, the optimist algorithms built upon those criteria are
fully sequential.

4.2.1. Data-Independent Criterion. In this section, we charac-
terize the optimal allocation of the budget 𝑛 depending only
on the values of 𝜇

𝑘
for each cluster. We want an allocation of

the budget thatminimizes the true risk of the classifier at time
𝑛. Here, the risk is based on the binary loss:

𝐿
0/1

(𝑦, 𝑓 (𝑥)) =

{

{

{

1, if 𝑓 (𝑥) ̸= 𝑦,

0, otherwise.
(5)

Note that this loss is usually hard to use because of its
nonconvex nature.

Using the partition𝑁, the true risk of the classifier is the
sum of the true risks in each cluster

𝑅 (𝑓) =

𝐾

∑

𝑘=1

𝑤
𝑘
𝑅
𝑘
(𝑓) =

𝐾

∑

𝑘=1

𝑤
𝑘
𝑅
𝑘
(𝑙
𝑘,𝑛
) (6)

with

𝑅
𝑘
(𝑙
𝑘,𝑛
) =

{

{

{

1 − 𝜇
𝑘
, if 𝑙

𝑘,𝑛
= 1,

𝜇
𝑘
, if 𝑙

𝑘,𝑛
= 0.

(7)

The risk is the mean number of misclassified instances
resulting from a particular prediction of labels.

The optimal label the algorithm should assign to arm 𝑘 is
[𝜇

𝑘
].This incurs a regret in the true risk 𝑅

𝑘
([𝜇

𝑘,𝑛
])−𝑅

𝑘
([𝜇

𝑘
]).

In order to define an allocation of the samples according
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to the [𝜇
𝑘
] values regardless of their estimates, the regret is

expected over all the samples. This gives us the following
definition of the loss for classification per cluster, as the
expected regret of the true risk in each cluster,

𝐿
𝑘,𝑛

(𝜇
𝑘
, 𝑇

𝑘,𝑛
) = E [𝑅

𝑘
([𝜇

𝑘,𝑛
]) − 𝑅

𝑘
([𝜇

𝑘
])] , (8)

where the expectation is taken over the samples:

𝐿
𝑘,𝑛

(𝜇
𝑘
, 𝑇

𝑘,𝑛
) = E [(1 − 𝜇

𝑘
) 1

[𝜇
𝑘,𝑛
]=1

+ 𝜇
𝑘
1
[𝜇
𝑘,𝑛
]=0

− (1 − 𝜇
𝑘
) 1

[𝜇
𝑘
]=1

− 𝜇
𝑘
1
[𝜇
𝑘
]=0

] = 2
𝜇𝑘 − 0.5



⋅ P ([𝜇
𝑘,𝑛
] ̸= [𝜇

𝑘
]) .

(9)

The value to beminimized by our allocation of the budget
is then the global loss. It is the sum of losses in each cluster:

𝐿
𝑛
((𝜇

𝑘
)
𝑘∈⟦1,𝐾⟧

, (𝑇
𝑘,𝑛
)
𝑘∈⟦1,𝐾⟧

) =

𝐾

∑

𝑘=1

𝑤
𝑘
𝐿
𝑘,𝑛

(𝜇
𝑘
, 𝑇

𝑘,𝑛
) . (10)

The objective is now to define an allocation of the budget
that minimizes this loss. However, in order to inverse the
loss to retrieve the allocation, as well as to derive the online
allocation strategy, the losses in each cluster have to be
strictly decreasing with 𝑇

𝑘,𝑡
and convex. This is not the case

with these losses. In order to get a more convenient shape,
we bound those losses by pseudolosses. The algorithms we
build aim to minimize this pseudoloss instead of the loss
defined previously. The idea is thus to bound the probability
P([𝜇

𝑘,𝑡
] ̸= [𝜇

𝑘
]). We use the fact that the estimated mean in

one subset follows a binomial distribution (labels are either 0
or 1). The bounds obtained this way are very tight and equal
at a infinitely countable number of points.

LetI
1−𝑝

(𝑛 − ⌊𝑘⌋, ⌊𝑘⌋ + 1) be the cumulative distribution
function of a binomial distribution of parameters 𝑛, 𝑝. Then,

P ([𝜇
𝑘,𝑛
] ̸= [𝜇

𝑘
])

= 1
[𝜇
𝑘
]=0

P (𝜇
𝑘,𝑛

≥ 0.5) + 1
[𝜇
𝑘
]=1

P (𝜇
𝑘,𝑛

< 0.5)

= 1
[𝜇
𝑘
]=0

(1 −I
1−𝜇
𝑘

(𝑇
𝑘,𝑛

− ⌊
𝑇
𝑘,𝑛

2
⌋ , ⌊

𝑇
𝑘,𝑛

2
⌋ + 1))

+ 1
[𝜇
𝑘
]=1

I
1−𝜇
𝑘

(𝑇
𝑘,𝑛

− ⌊
𝑇
𝑘,𝑛

2
⌋ , ⌊

𝑇
𝑘,𝑛

2
⌋ + 1) .

(11)

Note that the probability given above is a step function of
𝑇
𝑘,𝑛
/2 and thus is not a strictly decreasing function of 𝑇

𝑘,𝑛
.

That is not convenient as we require this condition in the
later. That is why we bound this probability by bounding the
truncated value ⌊𝑇

𝑘,𝑛
/2⌋. Then,

P ([𝜇
𝑘,𝑛
] ̸= [𝜇

𝑘
])

≤ 1
[𝜇
𝑘
]=0

(1 −I
1−𝜇
𝑘

(
𝑇
𝑘,𝑛

2
+ 1,

𝑇
𝑘,𝑛

2
))

+ 1
[𝜇
𝑘
]=1

I
1−𝜇
𝑘

(
𝑇
𝑘,𝑛

2
,
𝑇
𝑘,𝑛

2
+ 1) .

(12)
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Figure 1: P([𝜇
𝑘,𝑡
] ̸= [𝜇

𝑘
]) and its bound defined in (12).

Figure 1 displays this probability and the corresponding
bound function of 𝑇

𝑘,𝑡
for different values of 𝜇

𝑘
. We can see

that the bound is extremely tight, and its only role is to make
it strictly decreasing with 𝑇

𝑘,𝑡
and convex. It still retains as

much as possible the shape of the probability.
We therefore define the following pseudoloss:

�̃�
𝑛
((𝜇

𝑘
)
𝑘∈⟦1,𝐾⟧

, (𝑇
𝑘,𝑛
)
𝑘∈⟦1,𝐾⟧

) =

𝐾

∑

𝑘=1

�̃�
𝑘,𝑛

(𝜇
𝑘
, 𝑇

𝑘,𝑛
) (13)

with

�̃�
𝑘,𝑛

(𝜇
𝑘
, 𝑇

𝑘,𝑛
) = 2𝑤

𝑘

𝜇𝑘 − 0.5


⋅ [1
[𝜇
𝑘
]=0

(1 −I
1−𝜇
𝑘

(
𝑇
𝑘,𝑛

2
+ 1,

𝑇
𝑘,𝑛

2
))

+ 1
[𝜇
𝑘
]=1

I
1−𝜇
𝑘

(
𝑇
𝑘,𝑛

2
,
𝑇
𝑘,𝑛

2
+ 1)]

(14)

being the pseudoloss in each cluster.
Due to the convex nature of �̃�

𝑘,𝑛
, 𝜕�̃�

𝑘,𝑛
/𝜕𝑇

𝑘,𝑛
is a

strictly increasing function of 𝑇
𝑘,𝑛
. Thus, it admits an inverse

(𝜕�̃�
𝑘,𝑛
/𝜕𝑇

𝑘,𝑛
)
−1.

Let 𝑇∗

𝑘,𝑛
be the optimal number of samples to take in each

subset in order to minimize �̃�
𝑛
under the constraint that

∑
𝐾

𝑘=1
𝑇
∗

𝑘,𝑛
= 𝑛:

𝑇
∗

𝑘,𝑛
= (

𝜕�̃�
𝑘,𝑛

𝜕𝑇
𝑘,𝑛

)

−1

(𝜇
𝑘
𝑐
∗
) (15)

with 𝑐
∗ such that ∑𝐾

𝑘=1
(𝜕�̃�

𝑘,𝑛
/𝜕𝑇

𝑘,𝑛
)
−1

(𝜇
𝑘
, 𝑐

∗
) = 𝑛.

This defines the theoretical optimal allocation of the bud-
get. Since we do not know the closed form for (𝜕�̃�

𝑘,𝑛
/𝜕𝑇

𝑘,𝑛
)
−1
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and since an optimist algorithm needs an online allocation
criterion, we now show the online allocation criterion 𝐶

𝑘,𝑡
,

𝐶
𝑖

𝑘,𝑡
(𝜇

𝑘
, 𝑇

𝑘,𝑡
) = −

𝜕�̃�
𝑘,𝑛

𝜕𝑇
𝑘,𝑛

(𝜇
𝑘
, 𝑇

𝑘,𝑡
) , (16)

is such that an algorithm sampling at each time 𝑡 the cluster
𝑋

𝑘
𝑡

with

𝑘
𝑡
∈ arg max

1≤𝑘≤𝐾

𝑇
∗

𝑘,𝑡

𝑇
𝑘,𝑡

= arg max
1≤𝑘≤𝐾

𝐶
𝑖

𝑘,𝑡
(𝜇

𝑘
, 𝑇

𝑘,𝑡
) (17)

would result in the optimal allocation of the budget 𝑛.
We have seen here an optimal allocation of the budget

𝑛 that the optimist algorithm which will be defined in
Section 4.3 could try to reachwithout the knowledge of the𝜇

𝑘

values.The criterionwe derived only depends on the values of
the parameters in each cluster and not the current labels given
by the classifier. Considering them would lead to a better
allocation since the allocation in a cluster could stop when
the correct label is given.

4.2.2. Data-Dependent Criterion. In this section, we show a
criterion that leads to the optimal allocation of the budget 𝑛
depending not only on the values of 𝜇

𝑘
in each cluster, but

also on the current labels given by the classifier.
We define a new global loss that is the current regret of

the true risk:

𝐿
𝑑

𝑛
((𝜇

𝑘
)
𝑘∈⟦1,𝐾⟧

, (𝜇
𝑘,𝑛
)
𝑘∈⟦1,𝐾⟧

, (𝑇
𝑘,𝑛
)
𝑘∈⟦1,𝐾⟧

)

=

𝐾

∑

𝑘=1

𝑤
𝑘
𝐿
𝑑

𝑘,𝑛
(𝜇

𝑘
, 𝜇

𝑘,𝑛
, 𝑇

𝑘,𝑛
) ,

(18)

with

𝐿
𝑑

𝑘,𝑛
(𝜇

𝑘
, 𝜇

𝑘,𝑛
, 𝑇

𝑘,𝑛
) = 𝑅

𝑘
([𝜇

𝑘,𝑛
]) − 𝑅

𝑘
([𝜇

𝑘
])

= 2
𝜇𝑘 − 0.5

 1[𝜇𝑘,𝑛] ̸=[𝜇
𝑘
]
.

(19)

Themeasure of performance is still the expected true risk but
the value to be minimized is preferred to be run-dependent.

In order to minimize it, the selection strategy samples the
cluster for which the expected decrease of the loss would be
maximum. This criterion is thus the finite difference of the
loss E[Δ𝐿𝑑

𝑘,𝑡
] with

Δ𝐿
𝑑

𝑘,𝑡
= 𝐿

𝑑

𝑘,𝑡
(𝜇

𝑘
,
𝑇
𝑘,𝑡
𝜇
𝑘,𝑡

+ 𝑠

𝑇
𝑘,𝑡

+ 1
, 𝑇

𝑘,𝑡
+ 1)

− 𝐿
𝑑

𝑘,𝑡
(𝜇

𝑘
, 𝜇

𝑘,𝑡
, 𝑇

𝑘,𝑡
) ,

(20)

where 𝑠 is the label resulting from the sample and the
expectation is taken on 𝑠.

However, this is a good strategy only if this criterion is
strictly increasing with 𝑇

𝑘,𝑛
. We thus study the monotonicity

of this criterion. We consider sampling 𝑇+ more instances in
cluster 𝑘 with resulting average label 𝜇+. The new label given
by the classifier will be 𝑙+

𝑘,𝑡
= [(𝑇

𝑘,𝑡
𝜇
𝑘,𝑡

+ 𝑇
+
𝜇
+
)/(𝑇

𝑘,𝑡
+ 𝑇

+
)].

After 𝑇+ samples, the expected decrease of the loss is

E [Δ
𝑇
+𝐿

𝑑

𝑘,𝑡
]

= 2
𝜇𝑘 − 0.5

 (P (𝑙
+

𝑘,𝑡
̸= [𝜇

𝑘
]) − 1

[𝜇
𝑘,𝑛
] ̸=[𝜇
𝑘
]
) .

(21)

Injecting the value of 𝑙+
𝑘,𝑡
,

P (𝑙
+

𝑘,𝑡
= 1) = P(

𝑇
𝑘,𝑡
𝜇
𝑘,𝑡

+ 𝑇
+
𝜇
+

𝑇
𝑘,𝑡

+ 𝑇+
≥ 0.5)

= P(𝑇
+
𝜇
+
≥ 𝑇

𝑘,𝑡
(0.5 − 𝜇

𝑘,𝑡
) +

𝑇
+

2
) .

(22)

To shorten notations we use𝐷
𝑘,𝑡

= 2𝑇
𝑘,𝑡
(0.5 − 𝜇

𝑘,𝑡
).

We know that 𝜇+ is drawn from a binomial distribution
of parameter 𝜇

𝑘
and 𝑇

+, thus

P (𝑙
+

𝑘,𝑡
= 1) = 1 −I

1−𝜇
𝑘

(𝑇
+

− ⌊
𝐷

𝑘,𝑡
+ 𝑇

+

2
⌋ , ⌊

𝐷
𝑘,𝑡

+ 𝑇
+

2
⌋ + 1) ,

P (𝑙
+

𝑘,𝑡
= 0) = I

1−𝜇
𝑘

(𝑇
+

− ⌊
𝐷

𝑘,𝑡
+ 𝑇

+

2
⌋ , ⌊

𝐷
𝑘,𝑡

+ 𝑇
+

2
⌋ + 1) .

(23)

The criterion is not strictly increasing. In order to con-
sider this constraint, we define another criterion which is a
tight bound of the previous one.We first bound the following
probabilities:

P (𝑙
+

𝑘,𝑡
= 1) ≤ 1 −I

1−𝜇
𝑘

(
𝑇
+
− 𝐷

𝑘,𝑡

2
+ 1,

𝑇
+
+ 𝐷

𝑘,𝑡

2
)

= 𝑃
1
(𝜇

𝑘
, 𝑇

+
, 𝑇

𝑘,𝑡
, 𝜇

𝑘,𝑡
) .

(24)

Equivalently,

P (𝑙
+

𝑘,𝑡
= 0)P (𝑙

+

𝑘,𝑡
= 0)

≤ I
1−𝜇
𝑘

(
𝑇
+
− 𝐷

𝑘,𝑡

2
,
𝑇
+
+ 𝐷

𝑘,𝑡

2
+ 1)

= 𝑃
0
(𝜇

𝑘
, 𝑇

+
, 𝑇

𝑘,𝑡
, 𝜇

𝑘,𝑡
) .

(25)

The criterion resulting from this bounds is strictly
increasing but is not defined for all 𝑇+. Indeed, in order to
change the value of the label, the estimatedmean has to move
to the other side of 0.5. This often requires more than one
sample (e.g., if we already sampled 10 instances and 8 were
labeled 1, we need at least 6 new samples to have a chance
to change the label given by the classifier). In order to get a
bound defined for 𝑇+

= 1 and strictly increasing with 𝑇
+, we

make a linear interpolation between the value in 𝑇
+
= |𝐷

𝑘,𝑡
|

and the value in 𝑇
+
= 0 which is 0.
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We thus define the actual criterion:

Δ̃𝐿
𝑑

𝑘,𝑡
=

2𝑤
𝑘

𝜇𝑘 − 0.5


𝐷𝑘,𝑡



(1
[𝜇
𝑘
]=0

𝑃
0
(𝜇

𝑘
,
𝐷𝑘,𝑡

 , 𝑇𝑘,𝑡, 𝜇𝑘,𝑡)

+ 1
[𝜇
𝑘
]=1

𝑃
0
(𝜇

𝑘
,
𝐷𝑘,𝑡

 , 𝑇𝑘,𝑡, 𝜇𝑘,𝑡) − 1
[𝜇
𝑘,𝑡
] ̸=[𝜇
𝑘
]
) .

(26)

The online allocation criterion is

𝐶
𝑑

𝑘,𝑡
(𝜇

𝑘
, 𝑇

𝑘,𝑡
, 𝜇

𝑘,𝑡
) = −Δ̃𝐿

𝑑

𝑘,𝑡
, (27)

and it is such that an algorithm sampling at each time 𝑡 the
cluster𝑋

𝑘
𝑡

with

𝑘
𝑡
∈ arg max

1≤𝑘≤𝐾

𝐶
𝑑

𝑘,𝑡
(𝜇

𝑘
, 𝑇

𝑘,𝑡
, 𝜇

𝑘,𝑡
) (28)

would result in the optimal allocation of the budget 𝑛.
The criterion defined in this section leads to an optimal

allocation of the budget 𝑛 that the optimist algorithm which
will be defined in the next section could try to reach without
the knowledge of the 𝜇

𝑘
values. It depends on the value of the

parameters in each cluster as well as the current estimate of
this parameter by the classifier.

4.3. Included Optimism. In this section we introduce two
optimistic algorithms: OALC-DI (Optimistic Active Learn-
ing for Classification: Data Independent) which use the data-
independent criterion and OALC-DD (Optimistic Active
Learning for Classification: Data Dependent) which use
the data-dependent criterion for optimal budget allocation
defined in the previous sections. Both can be described by
the same core algorithm. Neither criteria can be used as they
are currently defined, for the active learning problem. Indeed,
the value of 𝜇

𝑘
in each cluster is not known in advance;

otherwise, the correct label would be known as well. Also, it
cannot directly replace those values by their estimationwhich
could lead to clusters being turned down. This is a case of
the exploration/exploitation tradeoff where the uncertainty
about the true value of 𝜇

𝑘
in each cluster has to be considered.

Therefore, we design an optimistic algorithm that estimates
those values and samples as close as possible to the optimal
allocation.

Following the Optimism in the Face of Uncertainty
approach, it builds a confidence interval on the criterion to
be maximized and draw the arm for which the upper bound
of this interval is highest.This is equivalent to saying it draws
the arm for which the criterion is possibly the highest. As
we know the shape of the distribution of the 𝜇

𝑘,𝑡
values,

the confidence interval is a Bayesian Credible Interval [21]
which leads to tight bounds. The Bayesian Credible Interval
is relative to a probability 𝛿 which allows for controling the
amount of exploration of the algorithm. The core algorithm
is presented in Algorithm 1. It takes one parameter 𝛿 and can
be derived in two algorithms depending on the criterion used.

Let us show how to build the Bayesian Credible Interval.
As each sample is drawn from a Bernoulli distribution,
the estimated means follow a binomial distribution. Beta
distributions provide a family of conjugate prior probability

Input: 𝛿
Intitialize: Sample each cluster once
for 𝑡 = 𝐾 + 1, . . . , 𝑛 do

Compute 𝑒
𝑘,𝑡

from (32) with 𝐶
𝑘,𝑡

from (16) or (27)
Sample the cluster𝑋

𝑘𝑡
with 𝑘

𝑡
= argmax

𝑘
𝑒
𝑘,𝑡

end
Output: [𝜇

𝑘,𝑛
] for all arms 1 ≤ 𝑘 ≤ 𝐾

Algorithm 1: Core algorithm.

distributions for binomial distributions. The uniform distri-
bution Beta(1, 1) is taken as the prior probability distribution,
because we have no information about the true distribution.
Using the Bayesian inference,

P (𝜇
𝑘
= 𝑥 | 𝜇

𝑘,𝑡
, 𝑇

𝑘,𝑡
)

=
𝑥
𝑇
𝑘,𝑡
𝜇
𝑘,𝑡 (1 − 𝑥)

𝑇
𝑘,𝑡
(1−𝜇
𝑘,𝑡
)

Beta (𝑇
𝑘,𝑡
𝜇
𝑘,𝑡

+ 1, 𝑇
𝑘,𝑡

(1 − 𝜇
𝑘,𝑡
) + 1)

.

(29)

In the following 𝐶
𝑘,𝑡

means either 𝐶𝑖

𝑘,𝑡
from (16) or 𝐶𝑑

𝑘,𝑡

from (27). Obviously,

P (𝐶
𝑘,𝑡

> 𝑒
𝑘
| 𝜇

𝑘,𝑡
, 𝑇

𝑘,𝑡
) = P (𝜇

𝑘
, 𝐶

𝑘,𝑡
> 𝑒

𝑘
| 𝜇

𝑘,𝑡
, 𝑇

𝑘,𝑡
) . (30)

Let 𝐼
𝑘
= {𝜇

𝑘
| 𝑓(𝑇

𝑘,𝑡
, 𝜇

𝑘
) > 𝑒

𝑘
}, then

P (𝐶
𝑘,𝑡

> 𝑒
𝑘
| 𝜇

𝑘,𝑡
, 𝑇

𝑘,𝑡
)

=

∫
𝑥∈𝐼
𝑘

𝑥
𝑇
𝑘,𝑡
𝜇
𝑘,𝑡 (1 − 𝑥)

𝑇
𝑘,𝑡
(1−𝜇
𝑘,𝑡
)
𝑑𝑥

Beta (𝑇
𝑘,𝑡
𝜇
𝑘,𝑡

+ 1, 𝑇
𝑘,𝑡

(1 − 𝜇
𝑘,𝑡
) + 1)

.

(31)

The upper bound of the Bayesian Credible Interval is then

𝑒
𝑘
s.t. P (𝐶

𝑘,𝑡
> 𝑒

𝑘
| 𝜇

𝑘,𝑡
, 𝑇

𝑘,𝑡
) = 𝛿. (32)

In this section, we have shown two optimistic algorithms
that share the same core. The difference lies in the full
knowledge criterion used. One depends only on the value of
the parameters of the distributions.The other one depends on
both the value of the parameters and the current estimates of
this parameter by the classifier. Both the resulting algorithms
depend only on the estimates of the parameters.

The problem solved by those algorithm is the one that
finds the best label to give to several separated clusters. This
separation comes from the partition of a continuous instance
space. A good hypothesis would be that the 𝜇

𝑘
values do not

vary fast and that neighbor clusters have close values of 𝜇
𝑘
. In

order to speed up learning and to increase generalization, we
could estimate 𝜇

𝑘
considering neighbor clusters. This is the

subject of next section.

5. Information Sharing Clusters

5.1. A Set of Partitions. The previous section introduces an
active learning algorithm which is based on a partition of the
instance space. Supposing this partition is given, it defines the
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best allocation of samples among its clusters that lead to the
lowest true risk of the classifier also based on this partition.
The best performance of the classifier still highly depends on
the choice of the partition, which has no obvious solution.
One way to improve the classifier’s performance is to increase
the number of clusters in the partition. But this slows learning
as each cluster parameter has to be estimated independently.
To counter that, we allow the classifier to generalize by letting
neighbor clusters share information. In order to use the same
approach as before, we consider the case of a committee of
partitions. Each partition estimates the parameter of their
clusters independently. Then, the local prediction of the label
is determined by averaging the estimations of each partition.

Let N be a set of𝑚 partitions of the instance space:

N = {𝑁
1
, . . . , 𝑁

𝑚
} , (33)

where ∀𝑗 ∈ {1, . . . , 𝑚}:

𝑁
𝑗
= {𝑋

1,𝑗
, . . . , 𝑋

𝐾
𝑗
,𝑗
} , (34)

with the following properties:

(i) ∀𝑖 ∈ ⟦1, 𝐾
𝑗
⟧ : 𝑋

𝑖,𝑗
̸= 0; no subset is empty,

(ii) ∪𝐾
𝑗

𝑖=1
𝑋

𝑖,𝑗
= 𝑋; the subsets cover the whole instance

space,
(iii) ∀(𝑖, 𝑘) ∈ ⟦1, 𝐾

𝑗
⟧
2
: 𝑖 ̸= 𝑘 ⇒ 𝑋

𝑖,𝑗
∩𝑋

𝑘,𝑗
= 0; no subsets

overlap.

Each partition may have a different number of subsets𝐾
𝑗
.

These partitions may come from random forests [22]
or tile coding which is a function approximation method
commonly used in the field of reinforcement learning [23].
The partitions must not change during the progress of the
algorithm.

We write 𝜇
𝑖,𝑗

= (1/𝑊
𝑖,𝑗
) ∑

𝑛

𝑡=1
1
𝑥
𝑡
∈𝑋
𝑖,𝑗

𝑦
𝑡
, the average label

in each cluster of each partition, and 𝑊
𝑖,𝑗

= ∑
𝑛

𝑡=1
1
𝑥
𝑡
∈𝑋
𝑖,𝑗

, the
number of samples in subset 𝑗.

Let us now define the thinnest partition N, which is the
partition resulting fromoverlapping all the partitions fromN:

N = {X
1
, . . . ,XK} (35)

such that∀𝑐 ∈ ⟦1,K⟧, ∀(𝑥
𝑎
, 𝑥

𝑏
) ∈ X2

𝑐
: ∀𝑗 ∈ ⟦1,𝑚⟧, ∃𝑖 ∈

⟦1, 𝐾
𝑗
⟧, 𝑥

𝑎
∈ 𝑋

𝑖,𝑗
⇔ 𝑥

𝑏
∈ 𝑋

𝑖,𝑗
.

This means that two elements coming from the same
subset of the thinnest partition necessarily come from the
same subset in any partition of the set.

Each cluster 𝑐 of this thinnest partition is associated with
a Bernoulli distribution of parameter 𝜇

𝑐
.

We write 𝜇
𝑐

= (1/𝑊
𝑐
) ∑

𝑛

𝑡=1
1
𝑥
𝑡
∈X
𝑐

𝑦
𝑡
, the average label

in cluster 𝑐, and 𝑊
𝑐
= ∑

𝑛

𝑡=1
1
𝑥
𝑡
∈X
𝑐

, the number of samples
in cluster 𝑐 of the thinnest partition. We write 𝑊

𝑐,𝑖,𝑗
=

𝑊
𝑐
/∑

K
𝑐=1

1X
𝑐
⊂𝑋
𝑖,𝑗

𝑊
𝑐
, the relative importance of cluster 𝑐 of

the thinnest partition in cluster 𝑖 of partition 𝑗. Note that
𝜇
𝑖,𝑗

= ∑
K
𝑐=1

1X
𝑐
⊂𝑋
𝑖,𝑗

𝑊
𝑐,𝑖,𝑗

𝜇
𝑐
.

In order to understand what those values exactly are,
an illustration is given on Figure 2. It shows an example

Set of partitions:

Thinnest partition:

Unlabeled instance

W1,1 = 1

W1,2 = 3

W1,3 = 2

W1,4 = 6

W8 = 2

W8,1,4 = 2/6 = 0,33

Figure 2: Representation of a set of partitions for a 2D instance
space.

of the partition of a two-dimensional instance space. The
set is composed of four partitions of four clusters each.
The resulting thinnest partition is, in this case, composed
of nine clusters. The dots represent the unlabeled instances
with which the weights of each clusters of each partition are
computed. The influence of a cluster of the thinnest partition
in the estimation of the mean value in one cluster of a
specific partition of the set is also computed. What is not
shown is how the influence of this last estimation on the final
prediction is computed. It is 1/4 in this case because there are
4 partitions in the set.

The prediction of the label is cluster 𝑐 that results from the
averaging of estimations of each partition:

𝑙
𝑐
= [

[

1

𝑚

𝑚

∑

𝑗=1

𝐾
𝑗

∑

𝑖=1

1X
𝑐
⊂𝑋
𝑖,𝑗

𝜇
𝑖,𝑗
]

]

. (36)

This can also be written as

(𝑙
1
, . . . , 𝑙K)

𝑇

= [𝑃 × (𝜇
1
, . . . , 𝜇K)

𝑇

] , (37)

where the elements of 𝑃 are ∀(𝑐
1
, 𝑐

2
) ∈ ⟦1,K⟧

2

𝑃
𝑐
1
,𝑐
2

= [

[

1

𝑚

𝑚

∑

𝑗=1

𝐾
𝑗

∑

𝑖=1

1X
𝑐1
⊂𝑋
𝑖,𝑗

1X
𝑐2
⊂𝑋
𝑖,𝑗

𝑊
𝑐
2
,𝑖,𝑗
]

]

. (38)

Note that the size of the matrix 𝑃 depends on the number
of subsets in the thinnest partition. It may be very large if the
initial partitions are not constrained. This is not a problem
since a subset of the thinnest partition containing no instance
from the training set causes its corresponding column of 𝑃
to be null. It can therefore be removed. The size of 𝑃 is thus
limited by the number of instances in the training set.

In the active learning setting with a pool-based sampling
scheme, the labels of the instances in the training set are not
known in advance but are acquired sequentially. Although the
pool of unlabeled instances is known initially, this allows us to
compute the matrix 𝑃 at the beginning of our algorithm and
keep it until the end. This is different from the case where
we consider only data already sampled, as done in Random
Forests, and the matrix 𝑃 has to be recomputed at each step.

Each cluster X
𝑐
∈ N is an arm of a multiarmed bandit

characterized by a Bernoulli distribution ]
𝑐
with mean value
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𝜇
𝑐
. At each round, or time step, 𝑡 ≥ 1, an allocation strategy

selects an arm 𝑐
𝑡
∈ ⟦1,K⟧, which corresponds to picking an

instance randomly in the cluster X
𝑐
𝑡

and receives a sample
𝑦
𝑡

∼ ]
𝑐
, independently of the past samples. (𝑊

𝑐
)
𝑐∈⟦1,K⟧

denote the weight of each cluster.
Then, if 𝑇

𝑐,𝑡
= ∑

𝑡

𝑠=1
1
𝑥
𝑠
∈X
𝑐

is the number of samples taken
in subset 𝑐 up to time 𝑡 and 𝜇

𝑐,𝑡
= (1/𝑇

𝑐,𝑡
) ∑

𝑡

𝑠=1
1
𝑥
𝑠
∈X
𝑐

𝑦
𝑠
if

𝑇
𝑐,𝑡

̸= 0 and 0.5, otherwise, is the mean of labels taken up to
time 𝑡.

Let us define the classifier that gives to subset 𝑐 the label

𝑓 (𝑥 ∈X
𝑐
) = 𝑙

𝑐,𝑡
= [

∑
K
𝑐

=1

𝑃
𝑐,𝑐
𝜇

𝑐

,𝑡
− 0.5

∑
K
𝑐

=1

𝑃
𝑐,𝑐
1

𝑇
𝑐
>0

+ 0.5] . (39)

Note that it gives the same label as (37) where 𝑙
𝑐,𝑡

=

[∑
K
𝑐

=1

𝑃
𝑐,𝑐
𝜇

𝑐

,𝑡
], and the only difference is that the value inside

the [⋅] is reweighted such that it is 1 when all 𝜇
𝑐,𝑡
are equal to

1.

5.2. Full Knowledge Criterion. In this section, we define the
allocation of the budget in the full knowledge setting for
the case of information sharing clusters. We also introduce a
criterion that leads to this allocation. Again, those parameters
are only used to define the allocation of the budget and not for
the prediction of labels.

In this problem, the clusters are not independent. This
means sampling an instance in a cluster affects the prediction
of other clusters. The criterion has shown here the results of
themyopic minimization of the true risk.With the weights of
each clusters being estimated from the number of instances in
the pool (labeled and unlabeled), the true risk is computed as
the risk on the pool. To decide the next cluster to sample, we
simulate sampling in each cluster and evaluate its expected
impact on the risk. The selected cluster is thus the one which
lowers the risk most.

Here, the risk is based on the binary loss:

𝐿
0/1

(𝑦, 𝑓 (𝑥)) =

{

{

{

1, if 𝑓 (𝑥) ̸= 𝑦,

0, otherwise.
(40)

Note that this loss is usually hard to use because of its
nonconvex nature.

First, suppose that the label 𝑙
𝑐,𝑡

is given to each subset
by the classifier at time 𝑡. The true risk encountered in each
subset is

𝑅
𝑐
(𝑙
𝑐,𝑡
) =

{

{

{

𝑊
𝑐
(1 − 𝜇

𝑐
) , if 𝑙

𝑐,𝑡
= 1,

𝑊
𝑐
𝜇
𝑐
, if 𝑙

𝑐,𝑡
= 0.

(41)

Note that the best risk is attained when 𝑙
𝑐,𝑡

= [𝜇
𝑐
].

Then, the true risk in each subset can also be written as
follows:

𝑅
𝑐
(𝑙
𝑐,𝑡
) = 𝑊

𝑐

𝜇𝑐 − 0.5
 1𝑙𝑐,𝑡 ̸=[𝜇

𝑐
]
+ 𝑅

𝑐
([𝜇

𝑐
]) . (42)

Let T
𝑡
= (𝑇

1,𝑡
, . . . , 𝑇K,𝑡

)
𝑇 be the number of samples taken

and �̂�
𝑡
= (𝜇

1,𝑡
, . . . , 𝜇K,𝑡

)
𝑇 the current mean of labels, in each

subset at time 𝑡. Let 𝑃
𝑐
be the 𝑐th row of 𝑃.

Let us remember that the labels given by the classifier
come from (39)

𝑅
𝑐
(T

𝑡
, �̂�

𝑡
, 𝜇

𝑐
) = 𝑊

𝑐

𝜇𝑐 − 0.5
 1[𝑃𝑐×�̂�𝑡] ̸=[𝜇

𝑐
]
+ 𝑅

𝑐
([𝜇

𝑐
]) . (43)

Let us note

T𝑐

𝑡
= (𝑇

1,𝑡
, . . . , 𝑇

𝑐−1,𝑡
, 𝑇

𝑐,𝑡
+ 1, 𝑇

𝑐+1,𝑡
, . . . , 𝑇K,𝑡

)
𝑇

,

�̂�
𝑐+

𝑡

= (𝜇
1,𝑡
, . . . , 𝜇

𝑐−1,𝑡
,
𝑇
𝑐,𝑡
𝜇
𝑐,𝑡

+ 1

𝑇
𝑐,𝑡

+ 1
, 𝜇

𝑐+1,𝑡
, . . . , 𝜇K,𝑡

)

𝑇

,

�̂�
𝑐−

𝑡
= (𝜇

1,𝑡
, . . . , 𝜇

𝑐−1,𝑡
,
𝑇
𝑐,𝑡
𝜇
𝑐,𝑡

𝑇
𝑐,𝑡

+ 1
, 𝜇

𝑐+1,𝑡
, . . . , 𝜇K,𝑡

)

𝑇

.

(44)

Knowing that the probability for the next sample taken in
subset 𝑐 to be 1 is 𝜇

𝑐
, we have the following expected decrease

in the risk incurred by sampling a new instance in subset 𝑐
that we note

Δ
𝑐
𝑅

𝑐
(T

𝑡
, �̂�

𝑡
, 𝜇

𝑐
)

= 𝜇
𝑐
 (𝑅

𝑐
(T𝑐

𝑡
, �̂�

𝑐

+

𝑡
, 𝜇

𝑐
) − 𝑅

𝑐
(T

𝑡
, �̂�

𝑡
, 𝜇

𝑐
))

+ (1 − 𝜇
𝑐
) (𝑅

𝑐
(T𝑐

𝑡
, �̂�

𝑐

−

𝑡
, 𝜇

𝑐
) − 𝑅

𝑐
(T

𝑡
, �̂�

𝑡
, 𝜇

𝑐
)) .

(45)

With the global risk being

𝑅 (T
𝑡
, �̂�

𝑡
,𝜇) =

K

∑

𝑐=1

𝑅
𝑐
(T

𝑡
, �̂�

𝑡
, 𝜇

𝑐
) , (46)

its expected decrease relatively to a new sample in subset 𝑐 is

Δ
𝑐
𝑅 (T

𝑡
, �̂�

𝑡
,𝜇) =

K

∑

𝑐=1

Δ
𝑐
𝑅

𝑐
(T

𝑡
, �̂�

𝑡
, 𝜇

𝑐
) . (47)

We then make a myopic minimization of the risk. Thus,
at time 𝑡, our full knowledge algorithm samples the subset

𝑐
𝑡
= arg min

𝑐

𝐶
𝑐
(T

𝑡
, �̂�

𝑡
,𝜇) , (48)

where

𝐶
𝑐
(T

𝑡
, �̂�

𝑡
,𝜇) = Δ

𝑐
𝑅 (T

𝑡
, �̂�

𝑡
,𝜇) (49)

is the criterion for the online allocation of the budget 𝑛.
Through this section, we have seen an online criterion,

based on the maximum expected decrease in terms of risk,
which a full knowledge algorithm would use to sample. The
hypothesis made about the knowledge of the 𝜇

𝑐
values is

unrealistic because if they were known, the classification
would be obvious; however, it allowed us to determine a good
allocation strategy that our partial knowledge algorithm tries
to attain. In the next section, we remove this hypothesis and
use an optimistic approach to estimate the 𝜇

𝑐
and at the same

time allocate samples as close as possible to the full knowledge
allocation.
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5.3. Included Optimism. In this section, we introduce two
optimistic algorithms based on the full knowledge criterion
of the previous section. The values of 𝜇

𝑐
are not given, so

the selection strategy cannot use them directly. Although
the labels acquired during the sampling process allow us to
estimate them. The simple replacement of the true values
with their estimates is unjustified and could lead to a bad
allocation.

Instead, we should consider the exploration/exploitation
tradeoff.More than the only estimates, we are able to compute
a distribution on the belief of𝜇

𝑐
. ABayesianCredible Interval,

relatively to a probability 𝛿, can thus be computed on the
values of 𝜇

𝑐
, as well as on the criterion.

Referring to the Optimism in the Face of Uncertainty
approach, we define a selection strategy that samples at
every time step the cluster for which the upper bound of
the Bayesian Credible Interval is highest. This leads to an
allocation of the samples as close as possible to the Full
Knowledge allocation even though the true value of 𝜇

𝑐
is not

known.
Our first algorithm is OEMAL (Optimistic Error Mini-

mization for Active Learning). It uses the set of partition as
defined in the previous section. The classifier is only defined
by the matrix 𝑃 representing the influence of clusters on each
other. The number of clusters in the thinnest partition is not
limited. One particular case of OEMAL is when its clusters
contain at most one instance from the pool. This makes 𝑃 act
as the covariance matrix used in kernel methods.

Our second algorithm is OEMAL-k (Optimistic Error
Minimization for Active Learning: kernel version). It takes
as input any covariance matrix and use it as the matrix 𝑃 in
OEMAL. This broadens the scope of the classifiers that can
be used. Note that, in order to use Optimism in the Face
of Uncertainty in a proper way, the matrix 𝑃 still must not
change. The rest of the section works for both algorithms.

Our algorithm is displayed in Algorithm 2. It takes one
parameter 𝛿 which allows us to control the level of explo-
ration used by our algorithm.

At any time, we are able to compute a Bayesian Credible
Interval on the value of the parameters of each cluster. Each
subset 𝑐 of the thinnest partition is associatedwith a Bernoulli
distribution of parameter 𝜇

𝑐
. Thus, the estimated means

are drawn from Binomial distributions. Beta distributions
provide a family of conjugate prior probability distributions
for Binomial distributions. With the prior probability distri-
bution being Beta(1, 1) (uniform distribution), by Bayesian
inference,

P (𝜇
𝑐
| 𝜇

𝑐
) = Beta (𝑇

𝑐
𝜇
𝑐
+ 1, 𝑇

𝑐
(1 − 𝜇

𝑐
) + 1) . (50)

However, this inference does not consider observations from
the neighbor clusters. Let us definem = (𝑚

1
, . . . , 𝑚K)

𝑇 with
∀𝑐 ∈ ⟦1,K⟧,

𝑚
𝑐
=

∑
K
𝑐

=1

𝑃
𝑐,𝑐
𝜇

𝑐
 − 0.5

∑
K
𝑐

=1

𝑃
𝑐,𝑐
1

𝑇
𝑐
>0

+ 0.5, (51)

which is the decision criterion of the classifier defined in (39).
In order to get an early guess about the value of 𝜇, we chose to

Input: 𝛿, 𝑃
Initialize: Sample one instance at random
for 𝑡 = 1, . . . , 𝑛 do
Compute 𝜇𝑁

𝑐
and 𝑠

𝑁

𝑐
from (52) and (53)

Use oneMethod 1 orMethod 2 to compute
P(𝐶

𝑐,𝑡
= 𝑄) | �̂�

𝑡
,T

𝑡
)

Compute 𝑒
𝑘,𝑡

from (61) Sample the clusterX
𝑐𝑡

with 𝑐
𝑡
= argmax

𝑐
𝑒
𝑐,𝑡

end
Output: 𝑙

𝑐,𝑛
for all arms 1 ≤ 𝑐 ≤ K

Algorithm 2: OEMAL/OEMAL-k.

inferm instead, which aims to approach 𝜇, and use it in place
of 𝜇. Even thoughm ̸= 𝜇 andwemay lose some accuracy, this
is necessary for our algorithm to work well.

First, let us state that m̂ results from a sumof independent
Binomial distributions; therefore assuming that the number
of nonnull elements in each row of 𝑃 is large enough, we can
approximate that m̂ follows a normal distribution.

The normal distribution provides a family of conjugate
prior probability distributions for the normal distributions;
thus, our belief aboutm follows a normal distribution with a
mean of 𝜇𝑁 = (𝜇

𝑁

1
, . . . , 𝜇

𝑁

K)
𝑇 with ∀𝑐 ∈ {1, . . . ,K},

𝜇
𝑁

𝑐
=

∑
K
𝑐

=1

𝑃
𝑐,𝑐
𝜇

𝑐

,𝑡
− 0.5

∑
K
𝑐

=1

𝑃
𝑐,𝑐
1

𝑇
𝑐
>0

+ 0.5 (52)

and a standard deviation s𝑁 = (𝑠
𝑁

1
, . . . , 𝑠

𝑁

K)
𝑇 with ∀𝑐 ∈

{1, . . . ,K},

𝑠
𝑁

𝑐
= √

K

∑

𝑐

=1

(
𝑃
𝑐,𝑐


∑
K
𝑐

=1

𝑃
𝑐,𝑐
1

𝑇
𝑐
>0

)

2

V𝐵
𝑐


(53)

with V𝐵
𝑐
 = (𝑇

2

𝑐
𝜇𝑐(1 − 𝜇

𝑐
) + 𝑇

𝑐
 + 1)/(𝑇

𝑐
 + 2)

2
(𝑇

𝑐
 + 3), the

variance of the Beta distribution.
Then,

P (m | �̂�) = N (𝜇
𝑁
(�̂�,T) , s𝑁 (�̂�,T)) . (54)

This algorithm, simulates the sampling of a new instance
in order to estimate the resulting gain in risk. Within each
simulation the distribution of the belief is updated by taking
into account the new sample. Then, this new distribution of
the belief is used to compute a distribution on the gain in risk.

Let us note 𝑦
𝑠
is the label of the instance sampled in the

simulation and

�̂�
𝑐

𝑡
= (𝜇

1,𝑡
, . . . , 𝜇

𝑐−1,𝑡
,
𝑇
𝑐,𝑡
𝜇
𝑐,𝑡

+ 𝑦
𝑠

𝑇
𝑐,𝑡

+ 1
, 𝜇

𝑐+1,𝑡
, . . . , 𝜇K,𝑡

)

𝑇

. (55)

We thus replace

P (𝐶
𝑐
(T

𝑡
, �̂�

𝑡
,𝜇) = 𝑄 | �̂�

𝑡
) (56)
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by

P (𝑦
𝑠
| 𝜇

𝑐
= 𝑚

𝑐
)P (𝑚

𝑐
| �̂�

𝑡
)

⋅ P (𝐶
𝑐
(T

𝑡
, �̂�

𝑡
,m) = 𝑄 | �̂�

𝑐

𝑡
)

= ∑

∑
𝑐
 𝑞
𝑐
=𝑄

P (𝑦
𝑠
| 𝑚

𝑐
)P (𝑚

𝑐
| �̂�

𝑡
)

⋅∏

𝑐


P (Δ
𝑐
𝑅
𝑐
 (𝑚

𝑐
) = 𝑞

𝑐
 | �̂�

𝑐

𝑡
) .

(57)

In order to compute this value we define two methods.

Method 1 (only for OEMAL). (i) Draw a high number of
instantiations of the belief from P(m | �̂�).

(ii) Compute for each case the resulting value of the
criterion.

(iii) Estimate the distribution of the criterion.
In our experiments, the set of partitionsNwe used is such

that every cluster of the thinnest partition contained at most
one instance from the pool.Thus, the value of 𝜇

𝑐
is contained

in {0, 1}.

Method 2 (if ∀𝑐 ∈ ⟦1,K⟧𝑊
𝑐
= 1). Compute the probability

of 𝜇
𝑐
being 0 as follows:

P (𝜇
𝑐
= 0 | �̂�

𝑡
) = Φ (0.5,𝜇

𝑁
(�̂�

𝑡
,T

𝑡
) , s𝑁 (�̂�

𝑡
,T

𝑡
)) , (58)

with Φ being the cumulative distribution function of the
normal distribution:

∑

∑
𝑐
 𝑞
𝑐
=𝑄

P (𝑦
𝑠
| 𝜇

𝑐
)P (𝜇

𝑐
| �̂�

𝑡
)

⋅∏

𝑐


P (Δ
𝑐
𝑅
𝑐
 (𝜇

𝑐
) = 𝑞

𝑐
 | �̂�

𝑐

𝑡
)

(59)

with

Δ
𝑐
𝑅
𝑐
 = 1

𝜇
𝑐
 ̸=𝑙
𝑐

𝑐

,𝑡

− 1
𝜇
𝑐
 ̸=𝑙
𝑐

,𝑡

(60)

and 𝑙
𝑐

𝑐

,𝑡
(�̂�

𝑐

𝑡
) and 𝑙

𝑐

,𝑡
(�̂�

𝑡
) from (39).

The simulation of a sample can lead to two states of the
classifier. Depending on this state, the true risk is the sum
of the true risk in each cluster, with at most two cases each
(𝑞

𝑐
 ∈ {−1, 1} or 𝑞

𝑐
 = 0), depending on the value of 𝜇

𝑐
in

each cluster. We can then compute the probability of a value
of the criterion by combining the probability of each case. As
the difference of the true risk for one cluster is 0 whenever the
prediction of the classifier does not change, we only consider
clusters for which the prediction of the classifier changes.
With this, the computation of the distribution of the criterion
can be done in a reasonable time.

Having computed the distribution of the criterion, we can
compute the upper bound of the Bayesian Credible Interval,
which is

𝑒
𝑐
= arg min

𝜖

P (𝐶
𝑐,𝑡

> 𝜖 | �̂�
𝑡
,T

𝑡
) ≤ 𝛿. (61)

In this section, we derived two optimistic algorithms
that address the active learning problem for classification.
OEMAL considers a set of partitions of the instance space as
well as the thinnest partition, resulting from overlapping this
set. OEMAL-k considers a kernel. They both find the cluster
of the thinnest partition for which sampling in it results in the
greatest decrease of the true risk.

5.4. Computational Complexity. Let K be the number of
clusters of the thinnest partition, and letK

𝑈
be the number of

clusters with at least one unlabeled instance.The computation
of the criterion requires O(K2

) time complexity.
Using Method 1, let 𝑛its be the number of instantiations

of the belief. The selection of the next cluster thus requires
O(K2K

𝑈
𝑛its) time complexity. Indeed, at each time step, it

computes the criterion for 𝑛its values of the parameters drawn
from the posterior and for the simulation of sample in each
one ofK

𝑈
clusters.

In the case where each cluster contains only one instance
from the pool, the decrease in risk in one cluster can be 0

if the predicted label does not change, or 1 or −1 depending
on the true label, if it changes. Let 𝑛changes be the number of
clusters seeing its label change for the considered simulation
of sample.

Using Method 2, the computational complexity of the
combinatorial procedure is O(𝑛2changes). Thus, the selection
of the next cluster requires a computational complexity of
O(K2K

𝑈
𝑛
2

changes).
Added to the fact that Method 2 is more precise than

Method 1 because the computed cumulative distribution is
exact, it is also faster, because 𝑛changes rapidly decreases while
acquiring more samples.

Note that the number of partitions in the set is not
involved in the computational complexity. Indeed, they are
only involved in the computation of the relations between
subsets of the thinnest partition which is made beforehand.
This is another advantage compared with the use of random
forests, where each tree has to be recomputed at every time
step.

6. Evaluation

In this section, we evaluate the algorithms introduced in the
previous sections. Each of the evaluation will be the scope
of a comparison between our algorithms and state-of-the
art algorithms. Algorithms are evaluated on two different
benchmarks depending on the classifier used.

In the case of independent clusters, either the instance
space is already discrete, or it is continuous and must be
partitioned. In the latter, the partition has to be chosen before
taking any samples and cannot be changed after that.The pre-
dicted label in each cluster depends only on samples drawn
in it. Thus, the number of clusters is limited by the budget
of samples and by a desired good learning rate. This makes
the partition rough and the classifier noncompetitive on real
world datasets. However, the small number of parameters
needed to represent any real world problem allows us to build
a representative benchmark.
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In the case of information sharing clusters, a partition is
also given beforehand but the predicted label in each cluster
may depend on all the samples. The number of clusters is
thus not limited as before, and an extremely refined partition,
where each cluster contains only one instance from the pool,
may be used. Thus, this algorithm may be evaluated on real
world problems with a continuous instance space.

6.1. Independent Clusters

6.1.1. Practical Implementation and Experimental Setup. Two
optimistic algorithms were introduced in the context of inde-
pendent clusters. Each one based on different full knowledge
criteria: the first one defines a one-shot allocation of the
samples, which means that the optimal number of samples
to take in each cluster is only function of its parameter and
of the budget, and the second one defines a fully sequential
allocation of the samples, which means that the optimal
number of points to take in each cluster depends also on the
samples drawn.

The performance of the algorithms closely depends on
the choice of the partition. Clusters may regroup instances
with a great dispersion of labels, either because the instances
are subject to a lot of noise, or because the mean label varies
rapidly. In this second case, a better discretization of the
instance space causes a better true risk when the correct label
is given. But this implies increasing the number of clusters,
and for the prediction of the label to be equivalently accurate,
we need a higher budget. As the problem of the choice of the
partition is not studied here, the use of our algorithm on real
world datasets with a continuous instance space would not be
competitive withmethods designed for this problem. Instead,
we show that, given any partition, the algorithm performs
better than other algorithms with the same constraints.

In this problem, where the classifier predicts one label per
cluster, the location in the cluster of the sampled instance is
of no interest. Therefore, every cluster can be seen as a pool
of instances returning labels with a certain proportion. With
the labels being either 0 or 1, this leads to a representation of
clusters as Bernoulli distribution only characterized by one
parameter. The relative position of the clusters is also of no
interest for the classifier. Consequently, every problem our
algorithm could encounter is only characterized by

(i) the number of clusters 𝐾,
(ii) the parameter of the Bernoulli distribution associated

with each cluster (𝜇
𝑘
)
𝑘∈⟦1,𝐾⟧

,
(iii) the weight of each cluster (𝑤

𝑘
)
𝑘∈⟦1,𝐾⟧

.

If two problems share the same characteristics, our algo-
rithms will act the same on them.

Our first benchmark is thus to generate randomly a set
of problems by drawing random parameters from the above
definition. Then, the tested algorithms are launched on each
problemof the set, and their true risk is recorded at every time
step. The current predicted label for each cluster is compared
to the correct one (the round value of 𝜇

𝑘
), and the true risk is

the weight sum of this logical comparison. Note that because
the problems are built in, the true parameter is known andwe

donot need a test set. Likewise, the samples are directly drawn
from the distributions and not drawn from a pool.The global
performance of the algorithms results fromaveraging the true
risk at each time step. In our experiments, the benchmark
contains 1000 problems generated with

(i) 𝐾 drawn uniformly in ⟦1, 50⟧,
(ii) (𝜇

𝑘
)
𝑘∈⟦1,𝐾⟧

drawn uniformly in [0, 1]
𝐾,

(iii) (𝑤
𝑘
)
𝑘∈⟦1,𝐾⟧

drawn uniformly in [0, 1]
𝐾.

The weights are normalized, but this is just anecdotal as
it does not affect the behavior of the algorithms. We use
a budget of 1000 samples. The results are displayed with
the time step range starting at 100 in order to be able to
differentiate algorithms.

Our second benchmark comes from the fact that not
all state-of-the-art algorithms consider the weight given to
clusters. In order to make sure that the good performance of
our algorithms is not only due to this consideration, in this
benchmark the weights are equal for all clusters.The problem
of allocation consists in defining which cluster has priority
against another. Thus, any problem is a subproblem of the
one containing an infinite number of clusters containing all
the values possible for the parameter. Then, we generate one
problem containing many clusters with the widest variety of
parameters. In our experiments, this problem is generated
with

(i) 𝐾 = 100,
(ii) ∀𝑘 ∈ ⟦1,𝐾⟧, 𝜇

𝑘
= 𝑘/𝐾,

(iii) ∀𝑘 ∈ ⟦1,𝐾⟧, 𝑤
𝑘
= 1/𝐾.

We run the algorithms 1000 times on this problem to face the
randomness of the samples and average their true risk at every
time step. The results are displayed with the time step range
starting at 100.

To demonstrate the effectiveness of our algorithms, we
compare them with existing state-of-the-art methods.

Random Sampling. This is the simplest baseline; at every time
step the sampled cluster is drawn uniformly in ⟦1, 𝐾⟧. Any
active learning algorithm should do better than that.

Uniform Sampling. This is another simple baseline, and
the clusters are sampled uniformly. At every time step the
sampled cluster is drawn uniformly among the least sampled
ones.

Monte Carlo Upper Confidence Bound (MC-UCB) (see [20]).
This algorithm also uses an optimistic approach, although
it is not originally designed for classification. It aims to
estimate uniformly well the parameter of the distribution in
each cluster. We use this estimation to predict the label. This
algorithm also considers a weight for each cluster.

EffECXtive (see [12]). This algorithm tries to identify the best
hypothesis from a set by successively sampling the instance
forwhich the expected reduction inweight is the greatest.The
weight is defined as the sum of the squared probabilities of
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hypotheses. In our case, a hypothesis is characterized by the
label given to each cluster, and the probability of a hypothesis
is

P (ℎ = (𝑦
𝑘
)
𝑘∈⟦1,𝐾⟧

) =

𝐾

∏

𝑘=1

P ([𝜇
𝑘
] = 𝑦

𝑘
| 𝜇

𝑘
) , (62)

where P([𝜇
𝑘
] = 1 | 𝜇

𝑘
) = I

0.5
(𝑇

𝑘
𝜇
𝑘
+ 1, 𝑇

𝑘
(1 − 𝜇

𝑘
) + 1) with

I
𝑥
(𝑎, 𝑏) being the regularized incomplete beta function.
The three optimistic algorithms evaluated in this section,

namely, MC-UCB, OALC-DI, and OALC-DD, use a parame-
ter 𝛿. This parameter has been tuned by using a grid search.

6.1.2. Evaluation. First, we evaluate the performance of the
algorithms on Benchmark 1. The results of the evaluation are
displayed on Figure 3(a).

We first compare MC-UCB with OALC-DI. MC-UCB is
an optimistic algorithm which tries to estimate uniformly
well the mean value of the distribution in each cluster. This
can be related to active learning in the case of regression. A
good estimate of the mean value leads to a good prediction
for the label. Therefore, this algorithm may be used on a
classification problem even though it may not be the best.
Indeed, it will spend effort to be precise on the estimation
of the mean value even if this precision is of no use for the
decision of the label. Those efforts could have been spent
in a different cluster where the label uncertainty is larger.
OALC-DI is the closest of our algorithms to MC-UCB as
they both consider a Full Knowledge criterion that gives the
optimal allocation of the budget without knowing the results
of the samples. The two differ in that OALC-DI is specifically
designed for classification.We can see that OALC-DI shows a
significant improvement overMC-UCB, which indicates that
working with an algorithm adapted for classification is not to
be neglected.

We then compare OALC-DI and OALC-DD. Those two
algorithms aimboth tominimize the sameobjective function,
which is the expected true risk of the classifier. Note that
using directly the true risk based on the binary loss is usually
avoided by minimizing a convex proxy of it. Although the
second one is based on a full knowledge criterion that takes
the current state of the classifier, depending on the results of
the samples so far, into account whereas the first one is not.
We can see that, as expected, the version of our algorithm
based on a data-dependent full knowledge criterion behaves
better than the one based on a data-independent one. Note
that even though the difference in performance is only of
0.0016 at time step 1000, which means that 0.16% of the
instances will be classified better, the number of time steps
required to attain the performance of OALC-DI at time step
1000 is of 625 for OALC-DD, which is a save of 37.5% of the
labeled instances.

Finally, let us take a look at the performances of OALC-
DD and EffECXtive. Both algorithms are very similar as
they greedily minimize an expected objective function. The
difference is that EffECXtive uses a proxy of the true risk,
the Rényi entropy, whereas OALC-DD, by allowing it to
depend on the true parameters of the distribution before
being optimist regarding it, is closer to the actual true risk.

Note that EffECXtive, in our adaptation to a partition of the
instance space, does not take into account relative importance
given to clusters (weights), which are not trivial to include.
The results show thatOALC-DDperforms slightly better than
EffECXtive.

Let us now evaluate the performance on Benchmark
2. The results are displayed in Figure 3(b). This problem
containsmore clusters than any other problem in Benchmark
1. A higher budget is thus needed to attain comparable
performances. Still, the range of time steps does not change.
This allows us to focus on the first phase of the algorithms. In
this problem, the weights are equal for all clusters, so that the
quality of an algorithm is not only based on the fact it has this
feature. In this problem, the best true risk is equal to 0.25.

Note that this range starts at 100 labeled examples. But
since most algorithms need every cluster to be sampled at
least once, at time step 100, each one of the 100 clusters will
be sampled once, and this is for every algorithm, apart from
random sampling. This is why every algorithm performance
starts at the same level. We thus do not lose much by starting
at this time step. The results of the first sample are 0 or 1
leading to the same precision on the prediction, and some
algorithms need every cluster to be sampled twice, and this
is why the performance at time step 200 is the same for most
algorithms. EffECXtive performance at 100 time step is not
the same as others as it samples indifferently clusters with
no samples and clusters with one sample. But it has the same
performance as others at time step 200. OALC-DD prefers to
sample clusters that have received two samples 0 and 1 than
one sample, which appears as a good behavior relatively to the
results.

We can see that OALC-DD has better performance than
all other algorithms at every time step.

6.2. Information Sharing Clusters
6.2.1. Practical Implementation and Experimental Setup. Two
other optimistic algorithms were introduced. Instead of
one partition, OEMAL uses a set of partitions which all
compute the estimates independently and merge to predict
the final label.The thinnest partitionwas defined, which is the
partition resulting from the intersection of all the partitions
in the set. We have seen that we could use a representation of
the classifier which involves only the clusters of the thinnest
partition and a matrix 𝑃 which tells how much the estimate
in one cluster plays a role in predicting the label in another
cluster. Using a set of partitions is thus equivalent to one
partition with clusters that share information.

The classifier used by our algorithm shares some resem-
blance with Random Forests [22] as it uses a set of partitions
and average of the prediction criterion of each one of them.
In our algorithm, the set of partitions has to remain the
same throughout the progress. Whereas in Random Forests,
they are recomputed at each step. Hence, it cannot adapt to
the received labels and must be defined at the beginning.
We use purely random partitions of the instance space that
are not based on the instances in the pool. It is thus more
closely related to tile coding which is a function approxima-
tion method commonly used in the field of Reinforcement
Learning [23].
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Figure 3: Evaluation of algorithms in the case of independent clusters.

The nature of the partitions in the set and its number
was not defined in the algorithm. In fact, the algorithm
works given any set of partitions. The performances of the
classifier clearly depend on the partitions in the set; for
example, if all the partitions in the set are the same, then the
problem is reduced to the one partition problem. But, as long
as partitions are diverse, their shape is not as determinant
as before. In the context of one partition, the number of
clusters in it could not be too large because the belief on the
parameter which guided the selection strategywas only based
on observations in its cluster. Now, the number of clusters
in the thinnest partition has no limitation. This allows us to
work with a continuous instance space without the loss in
performance incurred by the choice of the partition.

The partitionswe use consist of 7 successive random splits
of the instance space along random dimensions.The number
of partitions in the set is 10.000. At the end, the clusters of
the thinnest partition contain either 1 or no instance from the
pool.

OEMAL-k replaces the matrix 𝑃 in OEMAL by a covari-
ance matrix relatively to a kernel. In the experiments, we use
a Gaussian kernel covariance matrix:

𝑃
𝑖,𝑗

= 𝑒
−|𝑥
𝑖
−𝑥
𝑗
|
2
/2𝑠
2

. (63)

The scale parameter 𝑠 has been tuned to give the best
performance with a full training set.

We thus evaluate our algorithm on several real world
datasets from the UCI Machine Learning Repository [24].
The four datasets used in this paper are Australian, Diabetes,
Heart, and Wdbc. In all those datasets, the instances belong
to a continuous instance space. In each run of experiments,
the dataset is randomly divided into two.The first half is used
as the pool of unlabeled instances in which the algorithm
is allowed to pick, while the second half is used as the

test set. At each time step, the true risk of the current
prediction is estimated via the test set and recorded. The
global performance of an algorithm at each time step is
computed as the average of the performance among the runs.
In our experiments, the number of runs is set to 1.000. The
parameter 𝛿 is tuned for every dataset using a grid search.

We compare our algorithm with existing state-of-the-art
method and some baselines.

Random Sampling. This is the simplest baseline. At each time
step a random instance is drawn from the pool of unlabelled
instances.

Full Knowledge. This is the best algorithm we can do. At
each time step, an instance is selected according to the full
knowledge criterion. The values of the parameters are used;
thus, it is unrealistic but it serves to show how well the
exploration/exploitation tradeoff is achieved.

Uncertainty Sampling (see [7]). This is the most common
active learning algorithm. At each time step, the instance
which is most uncertain about how to label is selected.

6.2.2. Evaluation. Figure 4 displays the results of the evalua-
tion for the four following datasets: Figure 4(a) Australian,
Figure 4(b) Diabetes, Figure 4(c) Heart, and Figure 4(d)
Wdbc.

We built our optimistic algorithm by first defining a full
knowledge criterionwhich guides the allocation of samples in
the case where the true values of the parameters are known
from the beginning. This is then used by the algorithm as
a target allocation to attain in the case where those values
are unknown. The performances of OEMAL are thus limited
by those of the full knowledge allocation. We display the
performances of the Full Knowledge allocation as a baseline
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Figure 4: Evaluation of algorithms in the case of information sharing clusters.

for the Optimistic algorithm. If they both have the same
performances, then the only way to improve the algorithm
is to design a better Full Knowledge criterion. Otherwise,
the way to manage uncertainty is to improve. In other
words, it tells if the exploration/exploitation tradeoff is well
achieved. The full knowledge allocation, for its part, sees its
performances limited by the classifier, which may not have
better performances given any set of instances of size given
by the time step. Also, whereas in the dependent clusters
case the full knowledge allocation was known to be optimal,
meaning that we could not achieve better performances with
a different allocation, this is not the case anymore. Indeed, the
myopic minimization of the risk has no guaranty to lead to
the optimal allocation. For example, the best performances of

the classifier at time step 2 could be achieved by the inclusion
of a pair of instances that does not contain the instance that
leads to the best performance at time step 1. Although the
empirical results show that using a myopic minimization
in full knowledge performs quite well, we can see that on
the Wdbc dataset Figure 4(d), for a short period around
55 labeled instances, uncertainty sampling achieves slightly
better performance than the full knowledge allocation. The
optimistic algorithm can not thus do better on this period.
Still, we can see that it outperforms it on the 20 first samples
as well as it keeps high performance on the end while
Uncertainty Sampling seems to lose accuracy.

This last phenomenon can be explained. Let us look
at Figure 5 where we display the results for the Wdbc



Computational Intelligence and Neuroscience 15

Uncertainty sampling
OEMAL

Full knowledge
Random sampling

50 100 150 200 2500
Total number of samples

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Tr
ue

 ri
sk

Figure 5: Evaluation of the algorithms on Wdbc until all the
instances of the pool are sampled.

dataset with the range of time steps extended to show the
behavior of the algorithms until the last sample of the pool
is retrieved. We can see the performance of all the algorithm
decreases while approaching the end. We may think that the
performance can only increase with the number of samples
taken into account by the classifier. We know that this is
not necessarily true, particularly if the classifier overfits.
Also, in active learning, one can select a subset of instances
that achieves better performance than when taking all the
instances from the pool. The question of a stopping criterion
has already been studied in order to avoid spending useless
resources. Here, we see that it is even more crucial because it
could lead to better performances. In OEMAL, the criterion
used represents the maximum decrease of the true risk one
can expect by taking a particular sample. Thus, if the value
of the criterion is less than 0, this means that there is a
high probability (1 − 𝛿) that the true risk will not decrease
but increase. In this case, it is preferable not to sample
this instance. But if the maximum criterion is less than
0, it is preferable not to sample at all. We use this as a
stopping criterion. We compare the final performances of
our algorithm with and without the stopping criterion for
different datasets in Table 1.

Two of the four datasets see their true risk increase at the
end, Diabetes andWdbc.We can see that the use of a stopping
criterion is efficient in those cases and does not greatly alter
the performances in other cases.

The matrix 𝑃 appearing in the classifier we used so far is
derived from the use of a set of partitions. The value in each
cell of thematrix corresponds to theweight of each estimation
in each prediction. We saw that it was possible to use clusters
of the thinnest partition that contain only one instance from
the pool. Instances are linked to others through𝑃. Inherently,
in this case 𝑃 fully specifies the data manifold structure. The
theory that leads toOEMAL is built upon this set of partition,

Table 1: Final true risk of the classifier using OEMAL with or
without using a stopping criterion.

Dataset OEMAL with
stopping criterion

OEMAL without
stopping criterion

Australian 0.1367 0.1382
Diabetes 0.2422 0.3095
Heart 0.1724 0.1722
Wdbc 0.0397 0.0860

but we can imagine using a matrix 𝑃 of any kind, specifying
other weights between instances. OEMAL may still work in
this context. Particularly, we can adapt this algorithm to the
active learning of kernel classifiers. We thus use a Gaussian
kernel covariance matrix for 𝑃. We now denote the kernel
version of OEMAL by OEMAL-k. The results are displayed
in Figure 6.

We can see that OEMAL-k always does better than uncer-
tainty sampling. Even in theWdbc dataset where uncertainty
sampling performs worse than random sampling, OEMAL-
k manages to get better performance. One important thing
in active learning is the choice of the classifier. With a well-
fitted classifier, even the random sampling strategy could
perform better than the best active learning strategy on a
poor classifier. It is thus convenient that our algorithm is
not limited only to one kind of classifier and can easily
generalize to kernel classifiers. For example, on the Wdbc
dataset Figures 4(d) and 6(d), the random sampling strategy
performs significantly better when using a kernel than a set
of partitions, and OEMAL-k keeps improving the results.
On the other hand, on the Diabetes dataset Figure 6(b),
the random sampling strategy is also better with the kernel
classifier, but OEMAL performs better than OEMAL-k. As
we have seen in Figure 5, the active learning strategy of the
best performance for the classifier may be achieved with only
a subset of instances. Maybe the former classifier had a better
potential than the last. This is confirmed by the performance
of the full knowledge criterion.

In this section, we evaluated the performance of OEMAL
which is built on this approach on several real world datasets.
Thus, we demonstrated that the Optimism in the Face of
Uncertainty approach can be used for active learning in
classification. We saw that it performed comparatively well
to a famous state-of-the art algorithm. We also evaluated
OEMAL-k and showed that our algorithm could be gener-
alized to kernel methods or any graph based method where
the instances are linked to otherr by a weight matrix 𝑃.

7. Conclusion

In this paper, we show that the problem of active learning in
classification can be studied through the eye of Optimism in
the Face of Uncertainty. This has the advantage to allow the
selection criterion to be defined as close as possible to the
evaluation function. It introduces three error minimization
algorithms which use this approach. The experiments, con-
ducted on built-in problems as well as real world datasets,



16 Computational Intelligence and Neuroscience

Uncertainty sampling
OEMAL

Full knowledge
Random sampling

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Tr

ue
 ri

sk

20 40 60 80 1000
Total number of samples

(a) Australian

Uncertainty sampling
OEMAL

Full knowledge
Random sampling

0.25

0.3

0.35

0.4

0.45

0.5

Tr
ue

 ri
sk

20 40 60 80 1000
Total number of samples

(b) Diabetes

Uncertainty sampling
OEMAL

Full knowledge
Random sampling

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Tr
ue

 ri
sk

20 40 60 80 1000
Total number of samples

(c) Heart

Uncertainty sampling
OEMAL

Full knowledge
Random sampling

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Tr

ue
 ri

sk

20 40 60 80 1000
Total number of samples

(d) Wdbc

Figure 6: Evaluation of algorithms in the case of information sharing clusters.

show that they perform comparatively well to state-of-the-
art methods. An extension of the last algorithm shows that it
can be generalized to other kernels. We however constrained
the matrix 𝑃 to remain the same all along the progress of the
algorithm. Our perspective is to work with a changingmatrix
𝑃 such as in kernel regression or Gaussian processes where
the variance of the estimates is given.
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